Frankenstein: Stitching Malware from Benign Binaries

نویسندگان

  • Vishwath Mohan
  • Kevin W. Hamlen
چکیده

This paper proposes a new self-camouflaging malware propagation system, Frankenstein, that overcomes shortcomings in the current generation of metamorphic malware. Specifically, although mutants produced by current state-of-theart metamorphic engines are diverse, they still contain many characteristic binary features that reliably distinguish them from benign software. Frankenstein forgoes the concept of a metamorphic engine and instead creates mutants by stitching together instructions from non-malicious programs that have been classified as benign by local defenses. This makes it more difficult for featurebased malware detectors to reliably use those byte sequences as a signature to detect the malware. The instruction sequence harvesting process leverages recent advances in gadget discovery for return-oriented programming. Preliminary tests show that mining just a few local programs is sufficient to provide enough gadgets to implement arbitrary functionality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frankenstein: A Tale of Horror and Logic Programming∗

Frankenstein is a new, more stealthy malware propagation system that evades feature-based detection through camouflage rather than mere diversity. Rather than mutating purely randomly as it propagates, it stitches together instruction sequences harvested from programs that have already been classified as benign by local defenses. The resulting mutants are each unique, yet fully composed of beni...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

CAMP: Content-Agnostic Malware Protection

--In spite of recent advances, the world wide web remains an important vector for malware installation. Approaches to evaluating potentially malicious code before execution in a browser, such as blacklisting or content-based detection are hindered by an attacker’s ability to easily change hosting domains or mutate malware binaries. On the other hand, whitelistbased approaches are challenged by ...

متن کامل

Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables

Machine-learning methods have already been exploited as useful tools for detecting malicious executable files. They leverage data retrieved from malware samples, such as header fields, instruction sequences, or even raw bytes, to learn models that discriminate between benign and malicious software. However, it has also been shown that machine learning and deep neural networks can be fooled by e...

متن کامل

Automatic Discovery of Parasitic Malware

Malicious software includes functionality designed to block discovery or analysis by defensive utilities. To prevent correct attribution of undesirable behaviors to the malware, it often subverts the normal execution of benign processes by modifying their in-memory code images to include malicious activity. It is important to find not only maliciouslyacting benign processes, but also the actual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012